3.24 \(\int \frac{\cos ^2(e+f x) (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=193 \[ -\frac{4 a^2 \cos (e+f x) \sqrt{a \sin (e+f x)+a}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{8 a^3 \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}-\frac{a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 c f \sqrt{c-c \sin (e+f x)}} \]

[Out]

(-8*a^3*Cos[e + f*x]*Log[1 - Sin[e + f*x]])/(c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) - (4*a^2*C
os[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(c*f*Sqrt[c - c*Sin[e + f*x]]) - (a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3
/2))/(c*f*Sqrt[c - c*Sin[e + f*x]]) - (Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(3*c*f*Sqrt[c - c*Sin[e + f*x]
])

________________________________________________________________________________________

Rubi [A]  time = 0.64229, antiderivative size = 193, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.132, Rules used = {2841, 2740, 2737, 2667, 31} \[ -\frac{4 a^2 \cos (e+f x) \sqrt{a \sin (e+f x)+a}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{8 a^3 \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}-\frac{a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 c f \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(5/2))/(c - c*Sin[e + f*x])^(3/2),x]

[Out]

(-8*a^3*Cos[e + f*x]*Log[1 - Sin[e + f*x]])/(c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) - (4*a^2*C
os[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(c*f*Sqrt[c - c*Sin[e + f*x]]) - (a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3
/2))/(c*f*Sqrt[c - c*Sin[e + f*x]]) - (Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(3*c*f*Sqrt[c - c*Sin[e + f*x]
])

Rule 2841

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rule 2740

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Sim
p[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(m + n)), x] + Dist[(a*(2*m - 1))/(m
 + n), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && E
qQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m])
 &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rule 2737

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(
a*c*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x) (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{3/2}} \, dx &=\frac{\int \frac{(a+a \sin (e+f x))^{7/2}}{\sqrt{c-c \sin (e+f x)}} \, dx}{a c}\\ &=-\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c f \sqrt{c-c \sin (e+f x)}}+\frac{2 \int \frac{(a+a \sin (e+f x))^{5/2}}{\sqrt{c-c \sin (e+f x)}} \, dx}{c}\\ &=-\frac{a \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c f \sqrt{c-c \sin (e+f x)}}+\frac{(4 a) \int \frac{(a+a \sin (e+f x))^{3/2}}{\sqrt{c-c \sin (e+f x)}} \, dx}{c}\\ &=-\frac{4 a^2 \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{a \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c f \sqrt{c-c \sin (e+f x)}}+\frac{\left (8 a^2\right ) \int \frac{\sqrt{a+a \sin (e+f x)}}{\sqrt{c-c \sin (e+f x)}} \, dx}{c}\\ &=-\frac{4 a^2 \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{a \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c f \sqrt{c-c \sin (e+f x)}}+\frac{\left (8 a^3 \cos (e+f x)\right ) \int \frac{\cos (e+f x)}{c-c \sin (e+f x)} \, dx}{\sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=-\frac{4 a^2 \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{a \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c f \sqrt{c-c \sin (e+f x)}}-\frac{\left (8 a^3 \cos (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{c+x} \, dx,x,-c \sin (e+f x)\right )}{c f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=-\frac{8 a^3 \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}-\frac{4 a^2 \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{a \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{c f \sqrt{c-c \sin (e+f x)}}-\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c f \sqrt{c-c \sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 2.57986, size = 140, normalized size = 0.73 \[ -\frac{(a (\sin (e+f x)+1))^{5/2} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right ) \left (87 \sin (e+f x)-\sin (3 (e+f x))-12 \cos (2 (e+f x))+192 \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )\right )}{12 c f \sqrt{c-c \sin (e+f x)} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^5} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(5/2))/(c - c*Sin[e + f*x])^(3/2),x]

[Out]

-((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(a*(1 + Sin[e + f*x]))^(5/2)*(-12*Cos[2*(e + f*x)] + 192*Log[Cos[(e +
f*x)/2] - Sin[(e + f*x)/2]] + 87*Sin[e + f*x] - Sin[3*(e + f*x)]))/(12*c*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2
])^5*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [A]  time = 0.203, size = 218, normalized size = 1.1 \begin{align*}{\frac{\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) - \left ( \cos \left ( fx+e \right ) \right ) ^{2}-2\,\sin \left ( fx+e \right ) -\cos \left ( fx+e \right ) +2}{3\,f \left ( \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) - \left ( \cos \left ( fx+e \right ) \right ) ^{3}+2\,\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) +3\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}-4\,\sin \left ( fx+e \right ) +2\,\cos \left ( fx+e \right ) -4 \right ) } \left ( \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) +6\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}-22\,\sin \left ( fx+e \right ) -48\,\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +24\,\ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -6 \right ) \left ( a \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{{\frac{5}{2}}} \left ( -c \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x)

[Out]

1/3/f*(cos(f*x+e)^2*sin(f*x+e)+6*cos(f*x+e)^2-22*sin(f*x+e)-48*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+24*l
n(2/(cos(f*x+e)+1))-6)*(sin(f*x+e)*cos(f*x+e)-cos(f*x+e)^2-2*sin(f*x+e)-cos(f*x+e)+2)*(a*(1+sin(f*x+e)))^(5/2)
/(cos(f*x+e)^2*sin(f*x+e)-cos(f*x+e)^3+2*sin(f*x+e)*cos(f*x+e)+3*cos(f*x+e)^2-4*sin(f*x+e)+2*cos(f*x+e)-4)/(-c
*(-1+sin(f*x+e)))^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{5}{2}} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(5/2)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (a^{2} \cos \left (f x + e\right )^{4} - 2 \, a^{2} \cos \left (f x + e\right )^{2} \sin \left (f x + e\right ) - 2 \, a^{2} \cos \left (f x + e\right )^{2}\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{c^{2} \cos \left (f x + e\right )^{2} + 2 \, c^{2} \sin \left (f x + e\right ) - 2 \, c^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral((a^2*cos(f*x + e)^4 - 2*a^2*cos(f*x + e)^2*sin(f*x + e) - 2*a^2*cos(f*x + e)^2)*sqrt(a*sin(f*x + e) +
 a)*sqrt(-c*sin(f*x + e) + c)/(c^2*cos(f*x + e)^2 + 2*c^2*sin(f*x + e) - 2*c^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(5/2)/(c-c*sin(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{5}{2}} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^(5/2)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(3/2), x)